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Electron beam emittance and energy spread challenge
O Fundamental X-FEL thresholds:

O FEL Emittance criterion: €En < A <’Y> /4’71'

State-of-the-art ~um rad scale normalized emittance g, = multi-GeV electron energies y required to
reach hard X-ray wavelengths A,

O FEL Energy spread criterion: (O'FY /) << p
Need <0.01% relative energy spreads to satisfy Pierce parameter p for hard x-ray output

O Key performance parameter is brightness, which also requires kA-level current |

I
Bep =
0 €2 - 0.1%0ow
. . . ) _ Ay -1/3
O Brightness crucial for FEL gain length: Lyip=-—F7=— x B,
Am\/3p1p

= 100°s m scale undulator lengths to drive photon field to saturation
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Plasmas wakefield accelerators: 100 GV/m fields, great also for “plasma
photocathodes” a.k.a. Trojan Horse

O Prospect for nm rad emittance; brightness
many orders of magnitude beyond even state-
of-the-art X-FEL linacs

driver

e-beam

can be estimated to be €, = o,g.0, /(mc)=

_ ' Wodo/23/* = 2.6 X 10~% mrad. This is one of the critical
Hlddlng etal., Phys. Rev. Letters 108, 035001 (2012) advantages of the acceleration scheme, which opens up
the possibility of 1ts use 1n future advanced free electron
laser (FEL)-based x-ray light sources, where emittance has
a lmiting effect on performance and reachable wave-
length. For example, an approximation for the minimum
wavelength based on the above emittance and an energy
similar as in the Linac Coherent Light Source (LCLS)

results in Ay, = 47€, /vicrs = 0.1 A, about 1 order of
magnitude better than the current LCLS performance [27].
We have also performed GENESIS simulations of the case in
which the beam presented here is accelerated up to
4.3 GeV, and used with a next generation undulator [28];

O Brightness transformer: Increase this scenario promises a 1.5 A SASE FEL that saturates in
by factor up to 100000x ~20 m, a dramatically shorter distance than the LCLS.
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6D —
€2 - 0.1%0ow 3



Brightness reach of plasma photocathode
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PWFA-(X)FEL may boost capabilities

U Explore capability of Trojan Horse-generated ultrahigh brightness beams for X-FEL

O FEL Emittance criterion: €n < A\ {(7v) /4m v
= 10's nmrad emittance allows to push towards harder X-ray wavelengths A, for low electron
energies y

Q FEL Energy spread criterion: (o~ /7) < p ¢/

= Energy spread (e.g. <0.01%) suffices X-FEL Pierce parameter p
47\/3p1p

= Brightness B boosts gain and allows saturation of photon field in 10 m vs. 100‘s metres, may allow
single spike sub-fs pulses

O FEL gainlength: Lg1p x B;'/3
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STFC “PWFA-FEL” programme:
“Exploratory Study of PWFA-FEL at CLARA” 2019-2023

Q Strathclyde-ASTeC-CIl-SLAC-UCLA collaboration, theory &
simulation supporting exp. R&D at CLARA, SLAC, DESY etc.

0 Recent breakthroughs:

0 G.G. Manahan, F. Habib et al., Nat. Comm. 8, 15705 (2017):
concept to reduce energy spread to < 0.01% levels

O A. Deng, O. Karger et al., Nat. Phys. 8, 1156-1160 (2019):
proof-of-concept of plasma photocathode at SLAC FACET
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b E-210: Trojan Horse at FACET

With better precision and
Incoming beams, in larger
blowout, in collinear geometry

e

Ultrabright
injected beam



«——* 2011 Invention Plasma Photocathode PWFA-FEL Roadmap
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Energy chirp control for ultrahigh 6D brightness
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Options to integrate future PWFA-(X)FEL into the UK X-FEL?

0 Add-on as ~10 metre-scale energy & brightness transformer:

: SASE2 : page
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Experiment

Electron and x-ray beam distribution (~1400 m) hall (50 m)

Electron accelerator (~2000 m)

O E.g. ~3 GeV, ~5 kA, ~10 umrad &, 20 fs in (can have 10's % energy spread)
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Ultralow emittance, ultrahigh brightness electron beams useful for
various applications

100|000 x
1x Ultrabright
N electron
Driver beam output
electron o .
beam input - E Betatron radiation «:»

4

» Inverse Compton scattering «-»
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STFC "PWFA-FEL" programme 2019-2023

Workshops planned across (plasma) accelerator & photon science

6D electron brightness
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_ePlasma Photocathode Synergies linacs & lasers & plasma

PWFA-XFEL thrust, uses e-beam from (X- FEL) linac
for energy & brightness boost g

Intense Photon Science
Electron Source 5

LINAC Trojan .
Cae
- = 5th gen.
- n‘nl © ams. ‘ ‘

M s -eélw”"’owe : y ) _~ Iab-sc.ale
:Lifn";zf:°.:z;zz::‘::"’\”2”"’“" . O— ultrabright
sty sansiormer \'\\]b coherent

sub-fs hard

X-ray sources

Incoherent
undulator radiation,
Betatron, ICS,
potentially LWFA-
FEL

\e.g. multi-

pulse LWFA

O Lasers required at all ends: for preionization of PWFA stage, plasma photocathode(s),

pump-probe, WDM, diagnostics
O Laser-plasma-based diagnostics novel promising additions for beam metrology

0 Co-location highly profitable 13



Summary

O PWFA and plasma photocathode may extend electron energy (factor 2-6) and brightness
(4-5 orders of magnitude) in linac afterburner add-on configurations

O UK-led experimental R&D programmes at on Trojan-PWFA at FACET-Il, CLARA, DESY
O STFC “PWFA-FEL" programme forward-looking support on theory and simulations

O By boosting electron energy and brightness, the X-FEL range could be substantially
expanded

O It may be prudent to add PWFA-FEL as a competitive edge for the UK X-FEL,
anticipating that the brightness boost can be demonstrated

O In such anticipation, we are also looking into where at SLAC a PWFA-XFEL booster
could be added/realized

O Hybrid LWFA—-PWFA could provide lab-scale solutions, LWFA e.g. via multi-pulse may
provide direct pathways to FEL, already produces supportive light sources

O Strong synergies between e-beams and lasers, R&D e.g. at CLF, SCAPA can support the
UK X-FEL mothership

0 R&D aligned with Plasma Wakefield Accelerator Steering Committee (PWASC) roadmap



Electron brightness begets photon brightness WP5

O 6D electron brightness 100000x better = light sources with ultrahigh performance

O E.g. hard x-ray free-electron laser:

= Ultrahigh gain in undulator, ~10 metre
saturation length vs. 100‘s of metres

= |mprove peak photon brilliance by at least two

orders of magnitude

= Push towards higher photon energies

= Attosecond photon beams: visualize electron
motion in molecules on natural timescale
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Concept of plasma photocathode-released “escort beam” for chirp control

Tailored beam loading via escort bunch allows chirp control:
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E-310: Trojan Horse-lI
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Spatiotemporal injection accuracy

0 Recipes: a) measure & minimize absolute jitter of incoming pulses; b) increase blowout
size (Deng, Karger et al., Nat. Phys. 2019, supplemental discussion)

Small blowout, large jitter: Large blowout, small jitter:
Poor injection precision Excellent injection precision (sub-%), and tunability?

Figure of merit y:
laser precision/(k,)
33% at FACET

0 60 120 180 240 300
& (um)

O Bonus: operation at lower plasma densities reduces residual energy spread
(Manahan & Habib et al., Nat. Comm. 8, 15705, 2017), and reduces requirements
on driver beam (can in turn realize kickback by further increasing stability?)
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How precise does the spatiotemporal injection need to be?

O Once absolute spatiotemporal injection precision is known:

Q Injection precision is dependent on size of the plasma wave, and absolute jitter
of incoming laser and delectron beam = work at lower plasma densities

O E.g. 500 um plasma wavelength, with 30 fs r.m.s. timing jitter (LCLS aims at
<10 fs) and similar pointing accuracy, an injection precision of ~1% can be
achieved




FACET-II driver beam baseline parameters

FACET-II driver beam parameters at the IP (BP or further downstream):

Charge =1.5nC
Beam length rms = 30 um st ~23.09 ﬁe
Beam length max = 160 um 10
Beam peak current ~ 5.0 kA
Beam density= 9.3e+23 m”(-3)
Qtilde= 8.3

Mean Energy= 10 GeV

Energy deviation rms = 500 MeV
Energy spread rms =5 %
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Beam beta*~ 7.5 mm?
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Follow up: What does this mean for obtainable beam quality and stability (5D)?

O Sensitivity analysis done for 250 um plasma wavelength: vary temporal
desync. from 0-30 fs, misalignment from 0-10 pm, laser intensity a, 0-2%

_ _ 21
Resulting 5D brightness:  Bsp = ——
€n,x En,y
Bsp: (7.11 £3.66)x10® A/m?/rad? Bsp: (10.45 +1.65)x108 A/m2/rad? Bsp: (13.50 +2.40)x 108 A/m2/rad?
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O Timing varied up to 30 fs in ~250 um blowout (y = 4%): excellent output beam stability!

Energy Stability: (72.38+0.69) MeV
Emittance Y Stability: (15.11£0.13) nm rad

Emittance Z Stability: (15.51+0.12) nm rad . 5D Brightness Stability: (10.45+1.65)x10'° A nm "~ rad
Bunch Length Stability: (0.22+0.04) ym ' o Peak Current Stability: (1.2310.21) kA

Charge Stability: (2.375 +0.006) pC
Rel. Energy Spread Stability: (1.52+0.11) %
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Transverse plasma photocathode release laser offset jitter study in 250 um length blowout

Charge Stability: (2.371 £0.005) pC
Rel. Energy Spread Stability: (1.41+0.05) %

Energy Stability: (72.15+0.59) MeV
Emittance Y Stability: (29.91+11.8) nm rad

Emittance Z Stability: (15.38+0.48) nm rad 5D Brightness Stability: (7.11£3.66)x10"° Anm - rad
Bunch Length Stability: (0.19+0.03) ym Peak Current Stability: (1.32+0.21) kA

7B — Misalignment: AY,,., =2pm

— Misalignment: AY).. =4pm

; 50+ —— Misalignment: AY),., =6pm
g —— Misalignment: AY, .., =8um
‘é’ Misalignment: AY,,.., = 10um
25+
9 ' . , | |
10
)
1
<]
10° | . . , ,
100

~
o
T

&y (nm rad)
w
o
T

25

100

75

50

£,, (nm rad)

25

0.6




Energy W (GeV)
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What does this mean for obtainable beam quality and stability (6D)?

Bep: (7.11 +3.66)x10'? A/m?/rad?/0.1%bw

Bgp: (10.45 +1.65)x10'? A/m?/rad?/0.1%bw

Bep: (13.50 +2.40)x10° A/m?/rad?/0.1%bw
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WP 2: Preliminary witness beam extraction

L Tailored plasma density at the exit

0 “escort”-bunch dechirping

0 Emittance is preserved at the exit

o
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Energy spread (MeV)
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Emittance preservation during extraction
L Decreasing plasma density at the exit

0 With “escort’-bunch dechirping

O Emittance is preserved!
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WP 2: Preliminary witness beam extraction

Plasma extraction ramps ————

— Loz =7 mm
= Leow» =8 mm
—— Lios? =9mm
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0 Tailored plasma density at the exit
O “escort’-bunch dechirping works with extraction ramp
0 Emittance is preserved at the exit
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WP 2: Preliminary transport line design

Double triple beam transport line

€

ultrahigh brightness
electron beam output

First triplet: permanent magnet quadrupoles
(PMQs) 700 T/m

Plasma lenses?

10 cm distance until 1st PMQ

6D-bright witness. 9 pC, duration 0.34 um

Second triplet: electromagnet quadrupoles
Elegant: CSR not problem.

ELEGANT simulation — &

n,x

Q

1.0 1.5

distance [m]

6D phase space from the
PIC-simulation is considered

Witness beam is captured
and matched

No withess beam emittance
growth—>6D brightness is
preserved




WP2: Escort and witness beam separation

O Beam energy of the escort bunch is significantly lower than witness beam energy
O Use dispersion elements such as dipoles to separate escort and witness bunch
Q For example: A chicane/ by-pass line with energy collimator after the second dipole

O Simulations indicate that the escort bunch diffracts quickly after the plasma stage

Energy collimator

-

Collimator -
/

T

PMQ-triplet




WP2: Escort and witness beam separation

1407:56
1 Mov 18

1.00 - ‘ . I . ‘ CX
OTR before the Escort bunch centroid evolution -
0.75 . L ] y
chicane E ’
o o =703,
E | - 43103
}—025 ><<’“ - 0—3_
—0.50 Q \
—8x1 0=3]
~0.75 01 —_ —_ | |
U . T T h . 0
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| s ()
U Green: escort; purple witness Centroids ¢ ™ slan

O Chicane between PMQ and EMQ
triplet for escort-witness beam s
separation

0 1D CSR effects included

U Chicane acts as a by-pass line for the

{mm

Y direction

3.4 GeV witness beam (0.08% energy '
spread, no chromatic issues)-> bunch _OTR betv eén dipole
duration, emittance and charge stays H#2and#3

constant after chicane (escort,~,1.GeV)



WP 3: XFEL Beam-by-design simulation

A. F. Habib et.al., publication in preparation

State-of-the-art NdFeB undulator
Undulator period: A, = 1.5 cm
Undulater parameter: K ~ 1.8
Resonace wavelength: A, = 0.45 nm

©

O O0O0OCO

GW-level power gain

fs-scale X-ray radiation pulse

0.35% bandwidth radiation

10 2.0 1.0
10° g
] = 0.8 -
— | (o]
S 50 -
= 10 - = 1.6fs 3 0.6 1
2 g 1.0 N
& 10*- 5 g 04 - A, ~ 0.45 nm
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10 1| GENESIS 1.3 Simulation
| ‘ ‘ ‘ 0.0 —l v~ | 90 ‘ ‘
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undulator distance (m)

pulse length (um)

wavelength (nm)

Doo0o0oU

Radiation wavelength: A, ~ 0.45 nm GENESIS 1.3 Simulation

Radiation bandwidth: ~0.1-0.35%

Saturation power: ~ GW-level

Radiation pulse duration: ~fs - Potential for sub-fs pulses
Saturation length: ~ 8-10 m



Preliminary X-ray free-electron laser results

Benchmark with unaveraged FEL code Puffin (Parallel Unaveraged Fel INtegrator)
LT Campbell and BWJ McNeil, Physics of Plasmas 19, 093119 (2012)

“Unaveraged” FEL code

Q
Q

Q
Q
Q

Power (W)

Not slowly varying envelope approximation (SVEA) and wiggler period averaging

approximations.

CSR is taken into account
Puffin results show excellent agreement with genesis simulation
Puffin results indicates sub-fs hard X-ray pulses-> single spike XFEL ?
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Summary

U Relative energy spread is reduced down to
AW, /W = 0.08 % and can be potetially
decreased further to AW,.,,c/W < 0.01 %

O Unprecedented ultrahigh 6D-brightness beams
are produced

0 6D-brightness technique potentially game-
changing for light sources and applications

O Electron beam 6D-brightness remains preserved
during the extraction from the plasma stage and
trasnport towards the undulator

U XFEL saturations after ~10 m, radiation
wavelength of A4, ~ 0.45 nm

O X-ray pulse of fs/sub-fs duration with GW-level
peak power

Peak brilliance [Phot./(sec. mrad® mm? 0.1% bw)]
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Vision and roadmap

PHILOSOPHICAL TRANSACTIONS
OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Directions in particle beam-driven plasma wakefield
acceleration

Theo Murphy meeting issue compiled and edited by Bernhard Hidding, Mark Hogan, Patric Muggli,

James Rosenzweig and Brian Foster
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Plasma Wakefield Accelerator Research
2019-2040

A community-driven UK roadmap compiled by the
Plasma Wakefield Accelerator Steering Committee (PWASC)

March 2019
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WP 14 Beam Quality Transformer

Trojan Horse plasma photocathode

Photon Science

Intense
Electron Source
o%‘bo
LINAC ,
- Trojan \\@o"oef,s
Horse / 0\@ ‘\gx\\ ¢
NeXource O ,\& e.g. boost FEL gain,

M2
o ;;,@6 ultrashort y-pulses,

?\6‘ multicolor beams...
A uly ngh
LINAC—-LWFA 'a/o;,,, IIi;:er y
plasma photocathode 6’7*'709 lb“”’c ysics

emittance, brightness, M rag
energy, energy spread
& stability transformer

LWFA

e.g. as injector,
staging..



